CEOE-004: Finite Element Method

L T P Credit 3 0 0 3

Course Outcomes: At the end of the course, the student will be able to:

CEOE-004.1	apply the procedure involved to solve a problem using Finite Element Methods, develop the element stiffness matrices using different approach.
CEOE-004.2	Analyze a 2D problem using line, triangular, ax symmetric and quadrilateral element.
CEOE-004.3	Analyze a 3D problem using tetrahedral and hexahedral elements.

Mapping of course outcomes with Program Outcomes

СО	PO1: Engineering knowledge	PO2 Problem analysis	PO3:Design/devel opment of solutions	PO4:Conduct investigations of complex problems	PO5:Modern tool usage	PO6: The engineer and society	PO7:Environmen t and sustainability	PO8:Ethics	PO9:Individual and team work	PO10:Communic ation	PO11:Project management and finance	PO12:Life-long learning
CEOE-004.1	3	3							3			3
CEOE-004.2	3	3							3			3
CEOE-004.3	3	3							3			3

Unit-I: Introduction to Finite Element Method:

- 1.1 General Applicability and Description of Finite Element Method
- 1.2 History of Finite Element Method

General Procedure of Finite Element Method:

- 1.3 Boundary Value Problems and Discretization of the domain,
- 1.4 Selection of Shapes, Types and Number of elements, node numbering technique,
- 1.5 Interpolation Polynomials, their selection and derivation in terms of global and local coordinates,
- 1.6 Convergence requirements.
- 1.7 Formulation of Element Characteristic, Matrices and Vectors,

- 1.8 Variational approach. Assembly of Element matrices and Vectors and Derivation system equations,
- 1.9 Computation of Element Resultants

Unit-II: Solution of Finite Element Method:

- 2.1 Weighed Residual Methods- Galerkin Method, One, two and three dimensional problems
- 2.2 Variation Methods- General Principles, Rayleigh Ritz Method, Least Square Method, Use of Lagrange's Multipliers
- 2.3 Eigen Value Problems,
- 2.4 Propagation Problems,
- 2.5 Computer Implementation of Gaussian Eliminations,

Unit-III: Iso-parametric Formulation:

- 3.1 Lagrange interpolation functions,
- 3.2 Isoparametric Elements and formulation
- 3.3 Numerical Integration, mapping and its use in mesh generation

Static Analysis:

- 3.4 Formulation of Equilibrium and Compatibility Equation- application to truss and beam.
- 3.5 Analysis of truss, Frames,
- 3.6 Plane Stress and Plane Strain Problems Plates and Shells.

Text / Reference Books:

- 1. Weaver, Johnson, Finite Element and Structural Analysis
- 2. HC Martin, Matrix Structural Analysis
- 3. CF Abel, CS Desai, Finite Element Methods
- 4. Buchanan, Finite element Analysis (Schaum Outline S), TMH
- **5.** Krishnamurthy, Finite element analysis, TMH